HDL promotes adiponectin gene expression via the CAMKK/CAMKIV pathway

Author:

Kobayashi Toshihiro1,Imachi Hitomi1,Fukunaga Kensaku1,Lyu Jingya1,Sato Seisuke1,Saheki Takanobu1,Ibata Tomohiro1,Matsumoto Mari1,Japar Salimah B1,Murao Koji1

Affiliation:

1. 1Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan

Abstract

Adiponectin (APN) is an adipokine that protects against diabetes and atherosclerosis. High-density lipoprotein (HDL) mediates reverse cholesterol transport, which also protects against atherosclerosis. In this process, the human homolog of the B class type I scavenger receptor (SR-BI/CLA-1) facilitates the cellular uptake of cholesterol from HDL. The level of circulating APN is positively correlated with the serum level of HDL-cholesterol. In this study, we investigated whether HDL stimulates the gene expression of APN through the Ca2+/calmodulin (CaM)-dependent protein kinase IV (CaMKIV) cascade. APN expression was examined using real-time PCR and western blot analysis in 3T3-L1 cells incubated with HDL. CaMKIV activity was assessed by the detection of activation loop phosphorylation (at Thr196 residue), and the effect of the constitutively active form, CaMKIVc, on APN promoter activity was investigated. Our results showed that HDL stimulated APN gene expression via hSR-BI/CLA-1. Furthermore, we explored the signaling pathways by which HDL stimulated APN expression in 3T3-L1 cells. The stimulation of APN gene expression by HDL appears to be mediated by CaMKK, as STO-609, a specific inhibitor of CaMKK2, prevents this effect. We revealed that CaMKIVc increased APN gene transcriptional activity, and the CaMKIV-dominant negative mutant blocked the effect of HDL on APN promoter activity. Finally, knockdown of hSR-BI/CLA-1 also canceled the effect of HDL on APN gene expression. These results suggest that HDL has an important role to improve the function of adipocytes by activating hSR-BI/CLA-1, and CaMKK/CaMKIV pathway is conceivable as one of the signaling pathways of this activation mechanism.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3