Kinase inhibitors for cancer alter metabolism, blood glucose, and insulin

Author:

Duggan Brittany1,Marko Daniel M2,Muzaffar Raveen3,Chan Darryl Y.4,Schertzer Jonathan D5

Affiliation:

1. B Duggan, Biochemistry and Biomedical Sciences , McMaster University, Hamilton, Canada

2. D Marko, Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada

3. R Muzaffar, Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada

4. D Chan, Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada

5. J Schertzer, Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada

Abstract

Small molecule kinase inhibitors (SMKIs) are a class of therapeutic drugs that target protein kinases in diseases such as cancer. SMKIs are often designed to inhibit kinases involved in cell proliferation, but these drugs alter cell metabolism and endocrine control of organismal metabolism. SMKI treatment in diabetic cancer patients reveals that certain SMKIs improve blood glucose control and can mitigate insulin dependence or diabetic medication requirements in both Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). Certain SMKIs can preserve functional β-cell mass and increase insulin secretion or insulin sensitivity. It is not yet clear why different SMKIs can have opposing effects on insulin and blood glucose. Understanding the therapeutic effects of these drugs in T1D and T2D is complicated by overlapping off-target effects of SMKIs. The potency of inhibition of the intended protein kinase and inhibition of multiple off-target kinases may underpin conflicting reports of how certain SMKIs alter blood glucose and insulin. We summarize the effects of SMKIs on the intended and off-target kinases that can alter blood glucose and insulin, including c-Abl, c-Kit, EGFR, and VEGF. Inhibition of PDGFRβ consistently lowers blood glucose in T1D and T2D. The effects of SMKIs on the kinases that regulate immune pathways, such as BTK and RIPKs mediate many of the diverse effects of these drugs on metabolism. We highlight that inhibition of RIPK2 by SMKIs is a central node in metabolism that influences key metabolic pathways including lipolysis, blood glucose control, insulin secretion, and insulin resistance.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3