Affiliation:
1. Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
Abstract
Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis1Pro4Glu9-glucagon and the acylated form desHis1Pro4Glu9(Lys12PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis1Pro4Glu9-glucagon moderately (P < 0.05) decreased STZ-induced elevations of food intake. Body weight was not different between groups of HFF-STZ mice and both treatment interventions delayed (P < 0.05) the onset of hyperglycaemia. The treatments reduced (P < 0.05–P < 0.001) circulating and pancreatic glucagon, whilst desHis1Pro4Glu9(Lys12PAL)-glucagon also substantially increased (P < 0.001) pancreatic insulin stores. Oral glucose tolerance was appreciably improved (P < 0.05) by both antagonists, despite the lack of augmentation of glucose-stimulated insulin release. Interestingly, positive effects on i.p. glucose tolerance were less obvious suggesting important beneficial effects on gut function. Metabolic benefits were accompanied by decreased (P < 0.05–P < 0.01) locomotor activity and increases (P < 0.001) in energy expenditure and respiratory exchange ratio in both treatment groups. In addition, desHis1Pro4Glu9-glucagon increased (P < 0.01–P < 0.001) O2 consumption and CO2 production. Together, these data provide further evidence that peptidic GCGR antagonists are effective treatment options for obesity-driven forms of diabetes, even when accompanied by insulin deficiency.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献