Identification of amino-acids in the alpha-subunit first and third loops that are crucial for the heterospecific follicle-stimulating hormone activity of equid luteinizing hormone/choriogonadotropin

Author:

Chopineau M,Martinat N,Gibrat JF,Galet C,Lecompte F,Foulon-Gauze F,Pourchet C,Guillou F,Combarnous Y

Abstract

OBJECTIVE: To identify amino-acids in the alpha-subunit important for expression of heterospecific FSH activity of horse (e) LH/choriogonadotropin (CG) (eLH) and donkey (dk) LH/CG (dkLH) (FSH/LH ratio ten times higher for eLH than for dkLH); this FSH activity absolutely requires an equid (donkey or horse) alpha-subunit combined with an equid beta-LH subunit. DESIGN: Chimeric alpha-subunits possessing the first 63 amino-acids of the porcine (p) and the last 33 amino-acids of the donkey alpha-subunit (alphap-dk) and the inverse (alphadk-p) were constructed. Porcine-specific amino-acids were introduced by mutagenesis in donkey alpha-subunit at positions 70, 85, 89, 93 and 96 (alphadk5xmut), 18 (alphadkK18E) or 78 (alphadkI78A). METHODS: These different alpha-subunits were co-transfected in COS-7 cells with beta-eLH, beta-dkLH and beta-eFSH. The LH and FSH bioactivities of the dimers were then assessed in two heterologous in vitro bioassays. RESULTS: alphap-dk or alphadk-p exhibited FSH activity when co-expressed with beta-eLH but not with beta-dkLH. alphadkK18E or alphadkI78A gave hybrids with no FSH activity and important LH activity when expressed with beta-dkLH. alphadkI78A/betaeLH displayed an FSH/LH ratio as low as that of dkLH. However, mutation at 78 in alpha-dk had no effect on FSH bioactivity when co-expressed with beta-eFSH. CONCLUSIONS: Amino-acids present in both the first two-thirds and the last third of the alpha-subunit of equid LHs are involved in their heterologous biospecificity. Ile alpha78 exerts as strong an influence on it as the beta102-103 residues. By contrast, this residue plays no role in the FSH specificity of eFSH.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3