cAMP-specific PDE4 phosphodiesterases and AIP in the pathogenesis of pituitary tumors

Author:

Bolger Graeme B,Bizzi Mariana F,Pinheiro Sergio V,Trivellin Giampaolo,Smoot Lisa,Accavitti Mary-Ann,Korbonits Márta,Ribeiro-Oliveira Antonio

Abstract

PDE4 cyclic nucleotide phosphodiesterases regulate cAMP abundance in cells and therefore regulate numerous processes, including cell growth and differentiation. The rat PDE4A5 isoform (human homolog PDE4A4) interacts with the AIP protein (also called XAP2 or ARA-9). Germline mutations inAIPoccur in approximately 20% of patients with Familial Isolated Pituitary Adenoma (FIPA) and 20% of childhood-onset simplex somatotroph adenomas. We therefore examined the protein expression of PDE4A4 and the closely related isoform PDE4A8 in normal human pituitary tissue and in pituitary adenomas. PDE4A4 had low expression in normal pituitary but was significantly overexpressed in somatotroph, lactotroph, corticotroph and clinically nonfunctioning gonadotroph adenomas (P<0.0001 for all subtypes). Likewise, PDE4A8 was expressed in normal pituitary and was also significantly overexpressed in the adenoma subtypes (P<0.0001 for all). Among the different adenoma subtypes, corticotroph and lactotroph adenomas were the highest and lowest expressed for PDE4A4, respectively, whereas the opposite was observed for PDE4A8. Naturally occurring oncogenic variants in AIP were shown by a two-hybrid assay to disrupt the ability of AIP to interact with PDE4A5. A reverse two-hybrid screen identified numerous additional variants in the tetratricopeptide repeat (TPR) region of AIP that also disrupted its ability to interact with PDE4A5. The expression of PDE4A4 and PDE4A8 in normal pituitary, their increased expression in adenomatous pituitary cells where AIP is meant to participate, and the disruption of the PDE4A4–AIP interaction byAIPmutants may play a role in pituitary tumorigenesis.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3