Expression of renin–angiotensin system components in the early bovine embryo

Author:

Pijacka Wioletta,Hunter Morag G,Broughton Pipkin Fiona,Luck Martin R

Abstract

The renin–angiotensin system (RAS), mainly associated with the regulation of blood pressure, has been recently investigated in female reproductive organs and the developing foetus. Angiotensin II (Ang II) influences oviductal gamete movements and foetal development, but there is no information about RAS in the early embryo. The aim of this study was to determine whether RAS components are present in the pre-implantation embryo, to determine how early they are expressed and to investigate their putative role at this stage of development. Bovine embryos produced in vitro were used for analysis of RAS transcripts (RT-PCR) and localisation of the receptors AGTR1 and AGTR2 (immunofluorescent labelling). We also investigated the effects of Ang II, Olmesartan (AGTR1 antagonist) and PD123319 (AGTR2 antagonist) on oocyte cleavage, embryo expansion and hatching. Pre-implanted embryos possessed AGTR1 and AGTR2 but not the other RAS components. Both receptors were present in the trophectoderm and in the inner cell mass of the blastocyst. AGTR1 was mainly localised in granular-like structures in the cytoplasm, suggesting its internalisation into clathrin-coated vesicles, and AGTR2 was found mainly in the nuclear membrane and in the mitotic spindle of dividing trophoblastic cells. Treating embryos with PD123319 increased the proportion of hatched embryos compared with the control. These results, the first on RAS in the early embryo, suggest that the pre-implanted embryo responds to Ang II from the mother rather than from the embryo itself. This may be a route by which the maternal RAS influences blastocyst hatching and early embryonic development.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3