Effects of dabrafenib and erlotinib combination treatment on anaplastic thyroid carcinoma

Author:

Choi Yeon-Sook1,Kwon Hyemi2,You Mi-Hyeon1,Kim Tae Yong3,Kim Won Bae3,Shong Young Kee3,Jeon Min Ji3ORCID,Kim Won Gu3

Affiliation:

1. 1Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

2. 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

3. 3Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

Abstract

Dabrafenib is a BRAF kinase inhibitor approved for treatment of BRAF-mutated anaplastic thyroid carcinoma (ATC) in combination with trametinib. Erlotinib is a tyrosine kinase inhibitor of EGF receptor (EGFR). We evaluated effects of dabrafenib and erlotinib combination treatment on ATC cells in vitro and in vivo. Cell proliferation, colony formation, apoptosis, and migration of ATC cells harboring a BRAF mutation (BHT101, 8505C, and SW1736) were evaluated after treatment with dabrafenib in combination with erlotinib or trametinib. The changes in activation of mitogen extracellular kinase (MEK) and extracellular signal-related kinase (ERK) signaling were also evaluated by Western blot analysis. Effects of these combinations were also evaluated using an in vivo xenograft model. First, we detected EGFR activation in dabrafenib-resistant SW1736 cells using a phospho-receptor tyrosine kinase array. A dabrafenib and erlotinib combination synergistically inhibited cell proliferation, colony formation, and migration, with an induction of apoptotic cell death in all three ATC cells, compared with dabrafenib or erlotinib alone. This synergistic effect was comparable with a dabrafenib and trametinib combination. The dabrafenib and erlotinib combination effectively inhibited phosphorylated (p)-MEK, p-ERK, and p-EGFR expressions compared with dabrafenib or erlotinib alone, while the dabrafenib and trametinib combination only inhibited p-MEK and p-ERK expressions. The dabrafenib with erlotinib or trametinib combinations also significantly suppressed tumor growth and induced apoptosis in a BHT101 xenograft model. The dabrafenib and erlotinib combination could be a potential novel treatment regimen to overcome drug resistance to dabrafenib alone in patients with BRAF-mutated ATC.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3