Androgen receptor mutations for precision medicine in prostate cancer

Author:

Shiota Masaki1ORCID,Akamatsu Shusuke2,Tsukahara Shigehiro1,Nagakawa Shohei1,Matsumoto Takashi1,Eto Masatoshi1

Affiliation:

1. Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

2. Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Abstract

Hormonal therapies including androgen deprivation therapy and androgen receptor (AR) pathway inhibitors such as abiraterone and enzalutamide have been widely used to treat advanced prostate cancer. However, treatment resistance emerges after hormonal manipulation in most prostate cancers, and it is attributable to a number of mechanisms, including AR amplification and overexpression, AR mutations, the expression of constitutively active AR variants, intra-tumor androgen synthesis, and promiscuous AR activation by other factors. Although various AR mutations have been reported in prostate cancer, specific AR mutations (L702H, W742L/C, H875Y, F877L, and T878A/S) were frequently identified after treatment resistance emerged. Intriguingly, these hot spot mutations were also revealed to change the binding affinity of ligands including steroids and antiandrogens and potentially result in altered responses to AR pathway inhibitors. Currently, precision medicine utilizing genetic and genomic data to choose suitable treatment for the patient is becoming to play an increasingly important role in clinical practice for prostate cancer management. Since clinical data between AR mutations and the efficacy of AR pathway inhibitors are accumulating, monitoring the AR mutation status is a promising approach for providing precision medicine in prostate cancer, which would be implemented through the development of clinically available testing modalities for AR mutations using liquid biopsy. However, there are few reviews on clinical significance of AR hot spot mutations in prostate cancer. Then, this review summarized the clinical landscape of AR mutations and discussed their potential implication for clinical utilization.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3