Affiliation:
1. Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Turin, Italy
2. Laboratory of Clinical Chemistry, Hospital of Desio, ASST Brianza, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
Abstract
In a Western or Westernized diet, the abundant cholesterol is invariably associated with the presence of biochemically reactive oxysterols, the amount of which mainly depends upon the autoxidation degree of cholesterol itself, during food harvesting, production and storage. Oxysterols, in the average amount and composition detected in a high-cholesterol diet, display remarkable pro-inflammatory and cytotoxic effects on the gut epithelium. Moreover, in a low micromolar range, they may change the physiological level and membrane localization of tight junctions of the intestinal epithelial barrier, which then become leaky and permeable to microbiota. This combination of toxic effects possibly exerted by dietary oxysterols likely contributes to the impairment of the microbiota–gut–brain axis, through both direct and indirect mechanisms hereby reviewed. Importantly, dietary oxysterols are absorbed like cholesterol and circulate in the bloodstream, mainly within LDLs, rendering these micelles more oxidized and dangerous. Last but not the least, dietary oxysterols may deeply interfere with correct gut–brain signalling because of the redox pathways they are hyper-regulating and sustaining. In conclusion, protective dietary measures should be adopted, including restricted consumption of cholesterol-rich food and reduction of cholesterol autoxidation in food production and storage, for instance by supplementation of food with flavonoids and/or other bioactive substances with strong anti-oxysterol properties.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献