Mutation of rat Zp2 causes ROS-mediated oocyte apoptosis

Author:

Wang Yan12,Huang Hualin12,Zeng Minghua12,Quan Ru-Ping12,Yang Jun-Ting12,Guo Dan12,Sun Ying12,Deng Hongwen34,Xiao Hongmei12

Affiliation:

1. 1Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China

2. 2Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China

3. 3Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA

4. 4Center of System Biology and Data Information, School of Basic Medical Science, Central South University, Changsha, China

Abstract

In this study, we investigated a gene-edited (Zp2MT/MT) rat model of infertility caused by the failure to express the zona pellucida glycoprotein 2 (ZP2) due to the significant reduction of mRNA amount. We examined the defects in the zona pellucida (ZP) caused by ZP2 nullification and the influence of these defects on aspects of oocyte development, including apoptosis and fertilization ability. To investigate the cause of the influence to the oocytes’ development, we evaluated the morphology of follicular transzonal projections (TZPs), known as ‘bridges’, which mediate the bidirectional signaling between the oocyte and surrounding granulosa cells and the level of reactive oxygen species (ROS) in ovulated eggs. Our results showed that two types of ZP defects were generated in the Zp2MT/MT rat,that is, ZP intact but thinned and ZP cracked (or even absent). The fertilization rate of the ovulated eggs reduced in both types, while increased oocyte apoptosis was observed only in the latter type. Moreover, the increased oocyte apoptosis rate correlated closely with the reduction in follicular TZPs and increased ROS levels in ovulated egg. In conclusion, nullification of rat ZP2 destroyed the integrity of the ZP, impaired the bidirectional signaling between the oocyte and surrounding granulosa cells. Therefore, the resulting infertility likely occurs via elevation of oxidative stress and oocytes apoptosis.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3