PREIMPLANTATION GENETIC TESTING: Single-cell technologies at the forefront of PGT and embryo research

Author:

Tšuiko Olga1,Fernandez Gallardo Elia2,Voet Thierry2,Vermeesch Joris Robert13

Affiliation:

1. 1Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium

2. 2Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium

3. 3Center of Human Genetics, University Hospitals of Leuven, Leuven, Belgium

Abstract

While chromosomal mosaicism in the embryo was observed already in the 1990s using both karyotyping and FISH technologies, the full extent of this phenomenon and the overall awareness of the consequences of chromosomal instability on embryo development has only come with the advent of sophisticated single-cell technologies. High-throughput techniques, such as DNA microarrays and massive parallel sequencing, have shifted single-cell genome research from evaluating a few loci at a time to the ability to perform comprehensive screening of all 24 chromosomes. The development of genome-wide single-cell haplotyping methods have also enabled for simultaneous detection of single-gene disorders and aneuploidy using a single universal protocol. Today, three decades later haplotyping-based embryo testing is performed worldwide to reliably detect virtually any Mendelian hereditary disease with a known cause, including autosomal-recessive, autosomal-dominant and X-linked disorders. At the same time, these single-cell assays have also provided unique insight into the complexity of embryo genome dynamics, by elucidating mechanistic origin, nature and developmental fate of embryonic aneuploidy. Understanding the impact of postzygotically acquired genomic aberrations on embryo development is essential to determine the still controversial diagnostic value of aneuploidy screening. For that reason, considerable efforts have been put into linking the genetic constitution of the embryo not only to its morphology and implantation potential, but more importantly to its transcriptome using single-cell RNA sequencing. Collectively, these breakthrough technologies have revolutionized single-cell research and clinical practice in assisted reproduction and led to unique discoveries in early embryogenesis.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3