Cortisol regulates epithelial permeability and sodium losses in zebrafish exposed to acidic water

Author:

Kwong Raymond W M,Perry Steve F

Abstract

The effects of cortisol on epithelial permeability and sodium (Na+) handling during acid exposure were investigated in larval zebrafish (Danio rerio). The results demonstrated that the whole-body absorption of the paracellular permeability marker polyethylene glycol-4000 (PEG-4000) decreased with increasing levels of exogenous cortisol. Western blot analysis revealed that the abundance of the epithelial tight junction proteins occludin-a and claudin-b was increased after cortisol treatment. Furthermore, translational gene knockdown of claudin-b using an antisense morpholino oligonucleotide caused an increase in the permeability to PEG-4000, which was mitigated by cortisol treatment, further suggesting a role for cortisol in reducing paracellular permeability. Exposure to acidic water (pH 4.0 vs 7.6) caused an expected increase in the diffusive loss of Na+and a decrease in whole-body Na+levels. These disruptive effects of acute acid exposure on Na+balance were reduced by treatment of larvae with exogenous cortisol. Translational knockdown of the glucocorticoid receptor (GR) abolished the effects of cortisol on epithelial PEG permeability, suggesting that activation of GR was probably the major signaling pathway for reducing epithelial permeability. During acid exposure, the epithelial PEG permeability in the GR morphants was significantly higher than in the control fish. Additionally, GR morphants exhibited a more pronounced diffusive loss of Na+than the control fish during acid exposure. These findings suggest that cortisol may help to minimize the negative consequences of acid exposure on Na+homoeostasis via GR-mediated reductions in epithelial permeability and paracellular Na+loss.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3