Vasopressin V1A receptors mediate the increase in gastric mucosal oxygenation during hypercapnia

Author:

Vollmer Christian,Schwartges Ingo,Naber Silke,Beck Christopher,Bauer Inge,Picker Olaf

Abstract

Hypercapnia (HC) improves systemic oxygen delivery (DO2) and microvascular hemoglobin oxygenation of the mucosa (μHbO2). Simultaneously, HC increases plasma levels of vasopressin. Although vasopressin is generally regarded a potent vasoconstrictor particularly in the splanchnic region, its effects on splanchnic microcirculation during HC is unclear. The aim of this study was to evaluate the role of endogenous vasopressin on gastric mucosal oxygenation and hemodynamic variables during physiological (normocapnia) and hypercapnic conditions. Five dogs were repeatedly anesthetized to study the effect of vasopressin V1A receptor blockade ([Pmp1,Tyr(Me)2]-Arg8-Vasopressin, 35 μg/kg) on hemodynamic variables and μHbO2 during normocapnia or HC (end-tidal CO2 70 mmHg). In a control group, animals were subjected to HC alone. μHbO2 was measured by reflectance spectrophotometry, systemic DO2 was calculated from intermittent blood gas analysis, and cardiac output was measured by transpulmonary thermodilution. Data are presented as mean±s.e.m. for n=5 animals. During HC alone, DO2 increased from 12±1 to 16±1 ml/kg per min and μHbO2 from 70±4 to 80±2%. By contrast, additional vasopressin V1A receptor blockade abolished the increase in μHbO2 (80±2 vs 69±2%) without altering the increase in DO2 (16±1 vs 19±2 ml/kg per min). Vasopressin V1A receptor blockade (VB) during normocapnia neither affected DO2 (13±1 vs 14±1 ml/kg per min) nor μHbO2 (75±3 vs 71±5%). Vasopressin V1A receptor blockade abolished the increase in μHbO2 during HC independent of DO2. Thus, in contrast to its generally vasoconstrictive properties, the vasopressin V1A receptors seem to mediate the increase in gastric microcirculatory mucosal oxygenation induced by acute HC.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3