Iodothyronine deiodinases: a functional and evolutionary perspective

Author:

Orozco Aurea,Valverde-R Carlos,Olvera Aurora,García-G Carlota

Abstract

From an evolutionary perspective, deiodinases may be considered pivotal players in the emergence and functional diversification of both thyroidal systems (TS) and their iodinated messengers. To better understand the evolutionary pathway and the concomitant functional diversification of vertebrate deiodinases, in the present review we summarized the highlights of the available information regarding this ubiquitous enzymatic component that represents the final, common physiological link of TS. The information reviewed here suggests that deiodination of tyrosine metabolites is an ancient feature of all chordates studied to date and consequently, that it precedes the integration of the TS that characterize vertebrates. Phylogenetic analysis presented here points to D1 as the oldest vertebrate deiodinase and to D2 as the most recent deiodinase gene, a hypothesis that agrees with the notion that D2 is the most specialized and finely regulated member of the family and plays a key role in vertebrate neurogenesis. Thus, deiodinases seem to be major participants in the evolution and functional expansion of the complex regulatory network of TS found in vertebrates.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3