Vasorelaxing effects of estetrol in rat arteries

Author:

Hilgers Rob H P,Oparil Suzanne,Wouters Wout,Coelingh Bennink Herjan J T

Abstract

This study comparedex vivorelaxing responses to the naturally occurring human hormone estetrol (E4) vs 17β-estradiol (E2) in eight different vascular beds. Arteries were mounted in a myograph, contracted with either phenylephrine or serotonin, and cumulative concentration-response curves (CRCs) to E4and E2(0.1–100 μmol/l) were constructed. In all arteries tested, E4had lower potency than E2, although the differential effect was less in larger than smaller arteries. In uterine arteries, the nonselective estrogen receptor (ER) blocker ICI 182 780 (1 μmol/l) caused a significant rightward shift in the CRC to both E4and E2, indicating that the relaxation responses were ER dependent. Pharmacological blockade of nitric oxide (NO) synthases byNω-nitro-l-arginine methyl ester (l-NAME) blunted E2-mediated but not E4-mediated relaxing responses, while inhibition of prostaglandins and endothelium-dependent hyperpolarization did not alter relaxation to either E4or E2in uterine arteries. Combined blockade of NO release and action withl-NAME and the soluble guanylate cyclase (sGC) inhibitor ODQ resulted in greater inhibition of the relaxation response to E4compared with E2in uterine arteries. Endothelium denudation inhibited responses to both E4and E2, while E4and E2concentration-dependently blocked smooth muscle cell Ca2+entry in K+-depolarized and Ca2+-depleted uterine arteries. In conclusion, E4relaxes precontracted rat arteries in an artery-specific fashion. In uterine arteries, E4-induced relaxations are partially mediated via an endothelium-dependent mechanism involving ERs, sGC, and inhibition of smooth muscle cell Ca2+entry, but not NO synthases or endothelium-dependent hyperpolarization.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3