Increased mitochondrial fission of glomerular podocytes in diabetic nephropathy

Author:

Ma Yiqiong1,Chen Zhaowei1,Tao Yu1,Zhu Jili1,Yang Hongxia1,Liang Wei1,Ding Guohua1

Affiliation:

1. 1Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China

Abstract

Aims Previous studies showed that abnormal mitochondrial structure and function were involved in the pathological process of diabetic nephropathy (DN). The dynamic mitochondrial processes, including fusion and fission, maintain the mass and quantity of mitochondria. Podocyte injury is a critical factor in the development and progression of DN. The present study evaluated the mitochondrial fission of podocytes in patients with DN. Methods We recruited 31 patients with biopsy-confirmed DN. A quantitative analysis of the mitochondrial morphology was conducted with electron microscopy using a computer-assisted morphometric analysis application to calculate the aspect ratio values. Immunofluorescence assays were used to evaluate protein colocalization in the glomeruli of patients. Results The urine protein level was significantly increased in DN patients compared to non-DN patients (P < 0.001), and the mitochondria in the podocytes from DN patients were more fragmentated than those from patients without DN. The mitochondrial aspect ratio values were negatively correlated with the proteinuria levels (r = −0.574, P = 0.01), and multiple regression analysis verified that the mitochondrial aspect ratio was significantly and independently associated with the urine protein level (β = −0.519, P = 0.007). In addition, Drp1, a mitochondrial fission factor, preferentially combines with AKAP1, which is located in the mitochondrial membrane. Conclusions In the podocytes of DN patients, mitochondrial fragmentation was increased, and mitochondrial aspect ratio values were correlated with the proteinuria levels. The AKAP1-Drp1 pathway may contribute to mitochondrial fission in the pathogenesis of DN.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3