Bone morphogenetic protein 2 inhibits FSH responsiveness in hen granulosa cells

Author:

Haugen Morgan J,Johnson A L

Abstract

Prior to follicle selection into the preovulatory hierarchy, hen granulosa cells from prehierarchal follicles remain undifferentiated, as defined in part by the virtual absence of LHR mRNA expression and inability to produce progesterone. It has previously been proposed that prior to follicle selection, granulosa cells are actively maintained in an undifferentiated state by epidermal growth factor receptor ligands (EGFRL) signaling via the MAP kinase/extracellular regulated kinase pathway. Moreover, there is recent evidence that EGFRL/MAP kinase signaling modulates FSH receptor (FSHR) transcription, in part, via inhibitor of differentiation/DNA-binding (ID) proteins. In the present studies with undifferentiated granulosa, recombinant human (rh) bone morphogenetic protein 2 (BMP2) induced the phosphorylation of SMAD1/5/8, and blocked transforming growth factor β and FSH-induced FSHR expression and progesterone production. Significantly, BMP2 rapidly induced mRNAs encoding betacellulin and EGF, plus ID proteins (ID1, ID3, and ID4). Alternatively, the bioactivity of BMPs can be modulated by one or more BMP antagonists, including noggin (NOG). NOG mRNA is expressed by both hen granulosa and theca tissues from prehierarchal follicles. Pretreatment of cultured granulosa with rh NOG reversed both the stimulatory effects of BMP2 on ID1, ID3, and ID4 expression and the inhibitory effects of BMP2 on FSHR mRNA levels and progesterone production. Collectively, these data provide evidence that prior to follicle selection, BMP2 signaling contributes toward maintaining granulosa cells in an undifferentiated state. The actions of BMP2 are, at least in part, mediated indirectly via enhanced EGFRL expression and ERBB receptor-mediated MAP kinase signaling, and can be modulated by the autocrine/paracrine production of NOG.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3