Differential expression of angiotensin II type 1 and type 2 receptors at the maternal–fetal interface: potential roles in early placental development

Author:

Tower C L,Lui S,Charlesworth N R,Smith S D,Aplin J D,Jones R L

Abstract

Angiotensin II (Ang II) is locally generated in the placenta and regulates syncytial transport, vascular contractility and trophoblast invasion. It acts through two receptor subtypes, AGTR1 and AGTR2 (AT1 and AT2), which typically mediate antagonising actions. The objectives of this study are to characterise the cellular distribution of AGTR1 and AGTR2 at the maternal–fetal interface and explore the effects on cytotrophoblast turnover. Low levels ofAGTR2mRNA were detected in first trimester placental homogenates using real-time PCR. Immunohistochemistry using polyclonal antibodies against AGTR1 and AGTR2 detected the receptors in first trimester placenta, decidua basalis and villous tip outgrowths in culture. Serial staining with cytokeratin-7 was used to identify extravillous trophoblasts (EVTs). AGTR1 was found in the syncytiotrophoblast microvillous membrane, in a subpopulation of villous cytotrophoblasts, and in Hofbauer cells. AGTR1 was strongly upregulated in cytotrophoblasts in cell columns and villous tip outgrowths, but was absent in interstitial and endovascular EVTs within the decidua. AGTR2 immunostaining was present in Hofbauer cells and villous cytotrophoblasts, but was absent from syncytiotrophoblast. Faint staining was detected in cell column cytotrophoblasts and villous outgrowths, but not in EVTs within the decidua. Both receptors were detected in placental homogenates by western blotting. Ang II significantly increased proliferation of cytotrophoblasts in both villous explants and villous tip outgrowths, but did not affect apoptosis. Blockade of AGTR1 and AGTR2 together abrogated this effect. This study shows specific expression patterns for AGTR1 and AGTR2 in distinct trophoblast populations at the maternal–fetal interface and suggests that Ang II plays a role in placental development and generation of EVTs.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3