Oocytes in sheep homozygous for a mutation in bone morphogenetic protein receptor 1B express lower mRNA levels of bone morphogenetic protein 15 but not growth differentiation factor 9

Author:

Crawford Janet L,Heath Derek A,Reader Karen L,Quirke Laurel D,Hudson Norma L,Juengel Jennifer L,McNatty Kenneth P

Abstract

The aim of this study was to test the hypothesis that the high ovulation rate in ewes (BB) homozygous for a mutation in the bone morphogenetic protein receptor type 1B (BMPR1B) gene is linked to lower BMP15 and/or GDF9 mRNA in oocytes compared with those in wild-type (++) ewes. Cumulus cell–oocyte complexes (COC) and granulosa cells (GC) were recovered from ≥1 mm diameter follicles of BB and ++ ewes during a prostaglandin-induced follicular phase. Expression levels of GDF9 and BMP15 were measured by multiplex qPCR from individual COC. The gonadotropin-induced cAMP responses of the GC from each non-atretic follicle were measured following treatment with FSH or human chorionic gonadotropin. In a separate validation experiment, GDF9 and BMP15 expression was present only in oocytes and not in cumulus cells. There was no effect of follicular diameter on oocyte-derived GDF9 or BMP15 mRNA levels. The mean expression levels of BMP15, but not GDF9, were significantly lower in all non-atretic follicles, including the subsets containing either FSH- or LH-responsive GC in BB, compared with ++, ewes. No genotype effects were noted for FSH-induced cAMP production by GC either with respect to dose of, or number of follicles responding to, FSH. However, ovaries from BB ewes contained significantly more follicles responsive to LH, with respect to cAMP production in GC. We propose that these findings are consistent with the hypothesis that the higher ovulation rate in BB sheep is due, at least in part, to lower oocyte-derived BMP15 mRNA levels together with the earlier onset of LH-responsiveness in GC.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3