Striatin heterozygous mice are more sensitive to aldosterone-induced injury

Author:

Garza Amanda E1,Trefts Elijah1,Katayama Rangel Isis A1,Brooks Danielle1,Baudrand Rene12,Moize Burhanuddin1,Romero Jose R1,Ranjit Sanjay1,Treesaranuwattana Thitinan1,Yao Tham M1,Adler Gail K1,Pojoga Luminita H1,Williams Gordon H1

Affiliation:

1. 1Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

2. 2Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica De Chile, Santiago, Chile

Abstract

Aldosterone modulates the activity of both epithelial (specifically renal) and non-epithelial cells. Binding to the mineralocorticoid receptor (MR), activates two pathways: the classical genomic and the rapidly activated non-genomic that is substantially modulated by the level of striatin. We hypothesized that disruption of MR’s non-genomic pathway would alter aldosterone-induced cardiovascular/renal damage. To test this hypothesis, wild type (WT) and striatin heterozygous knockout (Strn+/) littermate male mice were fed a liberal sodium (1.6% Na+) diet and randomized to either protocol one: 3 weeks of treatment with either vehicle or aldosterone plus/minus MR antagonists, eplerenone or esaxerenone or protocol two: 2 weeks of treatment with either vehicle or L-NAME/AngII plus/minus MR antagonists, spironolactone or esaxerenone. Compared to the WT mice, basally, the Strn+/ mice had greater (~26%) estimated renal glomeruli volume and reduced non-genomic second messenger signaling (pAkt/Akt ratio) in kidney tissue. In response to active treatment, the striatin-associated-cardiovascular/renal damage was limited to volume effects induced by aldosterone infusion: significantly increased blood pressure (BP) and albuminuria. In contrast, with aldosterone or L-NAME/AngII treatment, striatin deficiency did not modify aldosterone-mediated damage: in the heart and kidney, macrophage infiltration, and increases in aldosterone-induced biomarkers of injury. All changes were near-normalized following MR blockade with spironolactone or esaxerenone, except increased BP in the L-NAME/AngII model. In conclusion, the loss of striatin amplified aldosterone-induced damage suggesting that aldosterone’s non-genomic pathway is protective but only related to effects likely mediated via epithelial, but not non-epithelial cells.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3