Walking on water: subchondral vascular physiology explains how joints work and why they become osteoarthritic

Author:

Beverly Michael1ORCID,Murray David W1

Affiliation:

1. Botnar Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Oxford

Abstract

This review of bone perfusion introduces a new field of joint physiology, important in understanding osteoarthritis. Intraosseous pressure (IOP) reflects conditions at the needle tip rather than being a constant for the whole bone. Measurements of IOP in vitro and in vivo, with and without proximal vascular occlusion confirm that cancellous bone is perfused at normal physiological pressures. Alternate proximal vascular occlusion may be used to give a perfusion range or bandwidth at the needle tip more useful than a single IOP measure. Bone fat is essentially liquid at body temperature. Subchondral tissues are relatively delicate but are micro-flexible. They tolerate huge pressures with loading. Collectively, the subchondral tissues transmit load mainly by hydraulic pressure to the trabeculae and cortical shaft. Normal MRI scans demonstrate subchondral vascular marks which are lost in early osteoarthritis. Histological studies confirm the presence of those marks and possible subcortical choke valves which support hydraulic pressure load transmission. Osteoarthritis appears to be at least partly a vasculo-mechanical disease. Understanding subchondral vascular physiology will be key to better MRI classification and prevention, control, prognosis and treatment of osteoarthritis and other bone diseases.

Publisher

Bioscientifica

Subject

Orthopedics and Sports Medicine,Surgery

Reference41 articles.

1. Blood Supply of Bone: Scientific Aspects;Brookes,2012

2. Of the structure and diseases of articulating cartilages;Hunter,1743

3. The life and work of Sir Astley Cooper;Brock,1969

4. Blood supply of long bones;Brookes,1963

5. Intraosseous pressure as a measure of hemodynamic changes in bone marrow;Azuma,1964

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3