Author:
Murray P G,Hanson D,Coulson T,Stevens A,Whatmore A,Poole R L,Mackay D J,Black G C M,Clayton P E
Abstract
3-M syndrome is an autosomal recessive disorder characterised by pre- and post-natal growth restriction, facial dysmorphism, normal intelligence and radiological features (slender long bones and tall vertebral bodies). It is known to be caused by mutations in the genes encoding cullin 7, obscurin-like 1 and coiled-coil domain containing 8. The mechanisms through which mutations in these genes impair growth are unclear. The aim of this study was to identify novel pathways involved in the growth impairment in 3-M syndrome. RNA was extracted from fibroblast cell lines derived from four 3-M syndrome patients and three control subjects, hybridised to Affymetrix HU 133 plus 2.0 arrays with quantitative real-time PCR used to confirm changes found on microarray. IGF-II protein levels in conditioned cell culture media were measured by ELISA. Of the top 10 downregulated probesets, three represented IGF2 while H19 was identified as the 23rd most upregulated probeset. QRT-PCR confirmed upregulation of H19 (P<0.001) and downregulation of IGF2 (P<0.001). Levels of IGF-II secreted into conditioned cell culture medium were higher for control fibroblasts than those for 3-M fibroblasts (10.2±2.9 vs 0.6±0.9 ng/ml, P<0.01). 3-M syndrome is associated with a gene expression profile of reduced IGF2 expression and increased H19 expression similar to that found in Silver–Russell syndrome. Loss of autocrine IGF-II in the growth plate may be associated with the short stature seen in children with 3-M syndrome.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献