In vitro reduction of bovine oocyte ATP production with oligomycin affects embryo epigenome

Author:

Meulders Ben1ORCID,Leroy Jo L M R1,Xhonneux Inne1,Bols Peter E J1,Marei Waleed F A12ORCID

Affiliation:

1. Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium

2. Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

Abstract

In brief Epigenetic programming is a crucial process during early embryo development that can have a significant impact on the results of assisted reproductive technology (ART) and offspring health. Here we show evidence using a bovine in vitro experiment that embryo epigenetic programing is dependent on oocyte mitochondrial bioenergetic activity during maturation. Abstract This study investigated if oocyte and early embryo epigenetic programming are dependent on oocyte mitochondrial ATP production. A bovine in vitro experiment was performed in which oocyte mitochondrial ATP production was reduced using 5 nmol/L oligomycin A (OM; ATP synthase inhibitor) during in vitro maturation (IVM) compared to control (CONT). OM exposure significantly reduced mitochondrial ATP production rate in MII oocytes (34.6% reduction, P = 0.018) and significantly decreased embryo cleavage rate at 48 h post insemination (7.6% reduction, P = 0.031). Compared to CONT, global DNA methylation (5mC) levels were decreased in OM-exposed MII oocytes (9.8% reduction, P = 0.019) while global histone methylation (H3K9me2) was increased (9.4% increase, P = 0.024). In zygotes, OM exposure during IVM increased 5mC (22.3% increase, P < 0.001) and histone acetylation (H3K9ac, 17.3% increase, P = 0.023) levels, while H3K9me2 levels were not affected. In morulae, 5mC levels were increased (10.3% increase, P = 0.041) after OM exposure compared to CONT, while there was no significant difference in H3K9ac and H3K9me2 levels. These epigenetic alterations were not associated with any persistent effects on embryo mitochondrial ATP production rate or mitochondrial membrane potential (assessed at the four-cell stage). Also, epigenetic regulatory genes were not differentially expressed in OM-exposed zygotes or morulae. Finally, apoptotic cell index in blastocysts was increased after OM exposure during oocyte maturation (41.1% increase, P < 0.001). We conclude that oocyte and early embryo epigenetic programming are dependent on mitochondrial ATP production during IVM.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Reference68 articles.

1. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility;Adhikari,2022a

2. Depletion of oocyte dynamin-related protein 1 shows maternal-effect abnormalities in embryonic development;Adhikari,2022b

3. Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes;Al-Zubaidi,2021

4. Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos,2007

5. Inner mitochondrial membrane potential (ΔΨm), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes;Blerkom,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3