Inhibition of insulin secretion via distinct signaling pathways in alpha2-adrenoceptor knockout mice

Author:

Peterhoff M,Sieg A,Brede M,Chao CM,Hein L,Ullrich S

Abstract

OBJECTIVE: Adrenaline inhibits insulin secretion through activation of alpha(2)-adrenoceptors (ARs). These receptors are linked to pertussis toxin-sensitive G proteins. Agonist binding leads to inhibition of adenylyl cyclase, inhibition of Ca(2+) channels and activation of K(+) channels. Recently, three distinct subtypes of alpha(2)-AR were described, alpha(2A)-AR, alpha(2B)-AR and alpha(2C)-AR. At present, it is unknown which of these alpha(2)-AR subtype(s) may regulate insulin secretion. We used mice deficient in alpha(2)-ARs to analyze the coupling and role of individual alpha(2)-AR subtypes in insulin-secreting beta cells. METHODS: The inhibitory effect of adrenaline on insulin secretion was measured in freshly isolated and cultured wild type (wt) and alpha(2)-AR knockout (KO) mouse islets in order to examine the receptor subtypes which mediate adrenaline-induced inhibition of insulin secretion. Adenylyl cyclase activity was measured in isolated cultured islets. Membrane potential was measured using the amphotericin B permeabilized patch clamp method in isolated and cultured single islet cells. RESULTS: In wt, alpha(2A)- and alpha(2C)-AR KO mouse islets, adrenaline, 1 microM/L, inhibited secretion by 83, 80 and 100% respectively. In contrast, in alpha(2A/2C)-AR double KO mouse islets, adrenaline had no effect on stimulated secretion indicating that both alpha(2A)-AR and alpha(2C)-AR, but not alpha(2B)-AR, are functionally expressed in mouse islets. Surprisingly, glucose (16.7 mM/L)-induced secretion in the presence of 1 microM/L forskolin was greatly impaired in alpha(2A)-AR KO islets. However, when cAMP levels were increased further by the combination of forskolin (5 microM/L) and 3-isobutyl-1-methylxanthine (100 microM/L), secretion was stimulated 2.7-fold (8.5-fold in wt islets). Adrenaline lowered the concentration of cAMP in wt and alpha(2C)-AR KO mouse islets by 74%. Adrenaline also hyperpolarized wt and alpha(2C)-AR KO beta cells. In contrast, adrenaline did not inhibit adenylyl cyclase in islets of alpha(2A)-AR KO mice, nor did it hyperpolarize alpha(2A)-AR KO beta cells. CONCLUSION: Adrenaline inhibits insulin release through alpha(2A)- and alpha(2C)-ARs via distinct intracellular signaling pathways.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3