Insulin influences the nitric oxide cyclic nucleotide pathway in cultured human smooth muscle cells from corpus cavernosum by rapidly activating a constitutive nitric oxide synthase

Author:

Anfossi G,Massucco P,Mattiello L,Balbo A,Russo I,Doronzo G,Rolle L,Ghigo D,Fontana D,Bosia A,Trovati M

Abstract

AIMS: We have evaluated, in cultured human cavernosal smooth muscle cells, the expression and activity of calcium-dependent constitutive nitric oxide synthase (cNOS) and the ability of insulin to induce nitric oxide (NO) production and to increase intracellular cyclic nucleotides guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP). METHODS: cNOS mRNA was detected by RT-PCR amplification, cNOS protein by immunofluorescence, cNOS activity as l-[3H]-citrulline production from l-[3H]-arginine and cyclic nucleotides by radioimmunoassay. RESULTS: cNOS mRNA and cNOS protein were found in cultured cells; cNOS activity was increased by 5-min exposure to 1 micro mol/l calcium ionophore ionomycin (from 0.1094+/-0.0229 to 0.2685+/-0.0560 pmol/min per mg cell protein, P=0.011) and to 2 nmol/l insulin (from 0.1214+/-0.0149 to 0.2045+/-0.0290 pmol/min per mg cell protein, P=0.041). Insulin increased both cGMP and cAMP in a dose- and time-dependent manner (i.e. with 2 nmol/l insulin, cGMP rose from 2.71+/-0.10 to 6.80+/-0.40 pmol/10(6) cells at 30 min, P=0.0001; cAMP from 1.26+/-0.06 to 3.02+/-0.30 pmol/10(6) cells at 60 min, P=0.0001). NOS inhibitor N(G)-monomethyl-l-arginine and phosphatidylinositol 3-kinase (PI 3-kinase) inhibitors wortmannin and LY 294002 blunted these effects of insulin. The action of insulin on cyclic nucleotides persisted in the presence of phosphodiesterase inhibition, guanylate cyclase activation by NO donors and adenylate cyclase activation by Iloprost or forskolin. CONCLUSION: Human cavernosal smooth muscle cells, by expressing cNOS activity, are a source of NO and not only its target; in these cells, insulin rapidly activates cNOS through a PI 3-kinase pathway, with a consequent increase of both cyclic nucleotides, thus directly influencing the mechanisms involved in penile vascular tone and interplaying with classical haemodynamic mediators.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3