LH and FSH secretory responses to GnRH in normal individuals: a non-parametric deconvolution approach

Author:

De Nicolao G,Liberati D,Veldhuis JD,Sartorio A

Abstract

OBJECTIVE: To reconstruct the instantaneous secretion rate (ISR) of LH and FSH after GnRH administration in normal volunteers using non-parametric deconvolution, and to derive a direct integration formula to evaluate the amount of LH and FSH secreted during the first 60 min after the stimulus. DESIGN AND METHODS: First, the deconvolution method was validated in vivo by reconstructing doses ranging from 7.5 IU to 75 IU injected in three healthy adult volunteers whose endogenous LH had previously been downregulated by pretreating them, 3-4 weeks earlier, with 3.75 mg GnRH agonist i.m. Then, 40 healthy adult male volunteers were tested with a single 100 microg GnRH bolus, administered at 0 min. LH and FSH concentrations were determined at -30, 0, 15, 30, 45, 60, 90, and 120 min. RESULTS AND CONCLUSIONS: The validation study, conducted over a 10-fold range of doses, demonstrated that non-parametric deconvolution provided a reasonably accurate estimate of the amount of hormone entering the circulation. Applying deconvolution to the LH and FSH responses to GnRH, the ISRs of both hormones were shown to have a similar pattern, with a clearly delimited pulse after the GnRH bolus. In conjunction with earlier analyses of estimates of GHRH-stimulated GH secretion, we conclude that secretagogues evoke discrete LH, FSH, and GH secretory bursts of about 60 min total duration, despite markedly unequal (glyco-)protein hormone half-lives (18-500 min). With respect to the assessment of total hormone release during the first 60 min after the stimulus, the integration formula provided a reliable approximation of the result obtained by deconvolution, and had a negligible dependence on the samples at times 90 and 120 min.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3