Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor

Author:

Quinkler M,Meyer B,Bumke-Vogt C,Grossmann C,Gruber U,Oelkers W,Diederich S,Bahr V

Abstract

OBJECTIVE: Progesterone binds to the human mineralocorticoid receptor (hMR) with nearly the same affinity as do aldosterone and cortisol, but confers only low agonistic activity. It is still unclear how aldosterone can act as a mineralocorticoid in situations with high progesterone concentrations, e.g. pregnancy. One mechanism could be conversion of progesterone to inactive compounds in hMR target tissues. DESIGN: We analyzed the agonist and antagonist activities of 16 progesterone metabolites by their binding characteristics for hMR as well as functional studies assessing transactivation. METHODS: We studied binding affinity using hMR expressed in a T7-coupled rabbit reticulocyte lysate system. We used co-transfection of an hMR expression vector together with a luciferase reporter gene in CV-1 cells to investigate agonistic and antagonistic properties. RESULTS: Progesterone and 11beta-OH-progesterone (11beta-OH-P) showed a slightly higher binding affinity than cortisol, deoxycorticosterone and aldosterone. 20alpha-dihydro(DH)-P, 5alpha-DH-P and 17alpha-OH-P had a 3- to 10-fold lower binding potency. All other progesterone metabolites showed a weak affinity for hMR. 20alpha-DH-P exhibited the strongest agonistic potency among the metabolites tested, reaching 11.5% of aldosterone transactivation. The agonistic activity of 11beta-OH-P, 11alpha-OH-P and 17alpha-OH-P was 9, 5.1 and 4.1% respectively. At a concentration of 100 nmol/l, progesterone, 17alpha-OH-P and 20alpha-DH-P inhibit nearly 75, 40 and 35% of the transactivation by aldosterone respectively. All other progesterone metabolites tested demonstrate weaker affinity, and agonistic and antagonistic potency. CONCLUSIONS: The binding affinity for hMR and the agonistic and antagonistic activity diminish with increasing reduction of the progesterone molecule at C20, C17 and at ring A. We assume that progesterone metabolism to these compounds is a possible protective mechanism for hMR. 17alpha-OH-P is a strong hMR antagonist and could exacerbate mineralocorticoid deficiency in patients with congenital adrenal hyperplasia.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3