5-HT1 and 5-HT2 receptor agonists blunt +/- -alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-stimulated GH secretion in prepubertal male rats

Author:

Pinilla L,Gonzalez LC,Tena-Sempere M,Aguilar E

Abstract

OBJECTIVE: Excitatory amino acids, gamma-amino butyric acid (GABA), serotonin and catecholamines are involved in the control of GH secretion. The actions of these neurotransmitters are interconnected, and recently we showed that the stimulatory effect of GABA was blocked by MK-801, an antagonist of N-methyl-D-aspartate receptors. The present experiments were carried out to analyze the interrelationships between +/- -alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and serotoninergic and catecholaminergic pathways in the control of GH secretion in prepubertal (16-23-day-old) male rats. DESIGN AND METHODS: The GH response to AMPA was analyzed in animals pretreated with 5-hydroxytryptophan methyl ester (5-HTP) plus fluoxetine (a precursor of 5-hydroxytryptamine (5-HT) synthesis and a blocker of 5-HT re-uptake), R (+)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT, an agonist of the 5-HT1 receptors), +/- -2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) and alpha-methyl-5-hydroxytryptamine (agonists of 5-HT2 receptors), I-phenylbiguanide (an agonist of 5-HT3 receptors), or alpha-methyl-p-tyrosine (alpha-MPT) and diethyldithiocarbamate (DDC) (blockers of catecholamine synthesis). RESULTS: Basal GH secretion remained unchanged in prepubertal rats after activation of the serotoninergic system or blockade of catecholamine synthesis. The stimulatory effect of AMPA on GH secretion was blocked after activation of the serotoninergic system, through specific 5-HT1 and 5-HT2 receptor agonists. In contrast, activation of 5-HT3 receptors potentiated AMPA-stimulated GH secretion. CONCLUSIONS: Serotoninergic receptors modulate the stimulatory effect of AMPA on GH secretion in prepubertal male rats.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3