Is programming of glucocorticoid receptor expression by prenatal dexamethasone in the rat secondary to metabolic derangement in adulthood?

Author:

Cleasby ME,Livingstone DE,Nyirenda MJ,Walker BR,

Abstract

OBJECTIVE: Glucocorticoids may contribute to the association between retarded growth in utero and insulin resistance in adulthood. Administration of dexamethasone (dex) to pregnant rats results in low birth weight offspring, which develop glucose intolerance, hyperinsulinaemia and hypercorticosteronaemia. This may be explained by tIssue-specific differences in expression of glucocorticoid receptors (GR) in adult offspring: GR is increased in visceral fat and liver, and decreased in hippocampus and soleus muscle. However, cause and effect between altered GR expression, hypercorticosteronaemia, and hyperinsulinaemia remains to be established. DESIGN AND METHODS: Rats were treated with dex (100 microg/kg per day) or saline during the third week of pregnancy. In 5-8-Month-old male offspring, GR expression in insulin target tIssues was quantified by RNase protection assay in rats that were adrenalectomised (ADX group), sham operated (SHAM group), or adrenalectomised with supra-physiological corticosterone replacement (CORT group) (n=7-8 per group), and in rats treated orally with vehicle, metformin (43 mg/kg per day) or rosiglitazone (1 mg/kg per day), after 3 weeks. RESULTS: Manipulation of corticosterone concentration did not affect GR mRNA in skeletal muscle or adipose. In liver, sham-operated animals showed lower GR mRNA, but there was no difference between adrenalectomised and hypercorticosteronaemic animals (SHAM 0.11+/-0.01 ratio to beta-actin, vs ADX 0.22+/-0.02, CORT 0.23+/-0.02, (values expressed as means+/-s.e.m.), P<0.001). Rosiglitazone reduced GR mRNA by approximately 30% in liver of dex- and saline-treated offspring (P<0.05), but had no effect on GR in adipose and skeletal muscle. Metformin abolished the 38% up-regulation of liver GR mRNA induced by antenatal dex and also reduced GR mRNA preferentially in muscle of dex-treated animals (0.14+/-0.01 vs 0.10+/-0.01; P=0.03). CONCLUSIONS: We conclude that neither hypercorticosteronaemia nor hyperinsulinaemia are sufficient to cause the changes in GR expression in dex-programmed rats, implying that these changes may be primary in determining the programmed insulin resistant phenotype. Normalisation of GR expression by metformin may be important in the mode of action of this anti-diabetic agent and may be especially useful to reverse-programmed up-regulation of GR.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3