In the search for specific inhibitors of human 11beta-hydroxysteroid-dehydrogenases (11beta-HSDs): chenodeoxycholic acid selectively inhibits 11beta-HSD-I

Author:

Diederich S,Grossmann C,Hanke B,Quinkler M,Herrmann M,Bahr V,Oelkers W

Abstract

OBJECTIVE: Selective inhibitors of 11beta-hydroxysteroid-dehydrogenase type I may be of therapeutical interest for two reasons: i) 9alpha-Fluorinated 11-dehydrosteroids like 11-dehydro-dexamethasone (DH-D) are rapidly activated by human kidney 11beta-hydroxysteroid-dehydrogenase type II (11beta-HSD-II) to dexamethasone (D). If the same reaction by hepatic 11beta-HSD-I could be selectively inhibited, DH-D could be used for selective renal immunosuppressive therapy. ii) Reduction of cortisone to cortisol in the liver may increase insulin resistance in type 2 diabetes mellitus, and inhibition of the enzyme may lead to a decrease in gluconeogenesis. Therefore, we characterized the metabolism of DH-D by human hepatic 11beta-HSD-I and tried to find a selective inhibitor of this isoenzyme. METHODS: For kinetic analysis of 11beta-HSD-I, we used microsomes prepared from unaffected parts of liver segments, resected because of hepatocarcinoma or metastatic disease. For inhibition experiments, we also tested 11beta-HSD-II activity with human kidney cortex microsomes. The inhibitory potency of several compounds was evaluated for oxidation and reduction in concentrations from 10(-9) to 10(-5)mol/l. RESULTS: Whereas D was not oxidized by human liver microsomes at all, cortisol was oxidized to cortisone with a maximum velocity (V(max)) of 95pmol/mg per min. The reduction of DH-D to D (V(max)=742pmol/mg per min, Michaelis--Menten constant (K(m))=1.6 micromol/l) was faster than that of cortisone to cortisol (V(max)=187pmol/mg per min). All reactions tested in liver microsomes showed the characteristics of 11beta-HSD-I: K(m) values in the micromolar range, preferred cosubstrate NADP(H), no product inhibition. Of the substances tested for inhibition of 11beta-HSD-I and -II, chenodeoxycholic acid was the only one that selectively inhibited 11beta-HSD-I (IC(50) for reduction: 2.8x10(-6)mol/l, IC(50) for oxidation: 4.4x10(-6)mol/l), whereas ketoconazole preferentially inhibited oxidation and reduction reactions catalyzed by 11beta-HSD-II. Metyrapone, which is reduced to metyrapol by hepatic 11beta-HSD-I, inhibited steroid reductase activity of 11beta-HSD-I and -II and oxidative activity of 11beta-HSD-II. These findings can be explained by substrate competition for reductase reactions and by product inhibition of the oxidation, which is a well-known characteristic of 11beta-HSD-II. CONCLUSIONS: Our in vitro results may offer a new concept for renal glucocorticoid targeting. Oral administration of small amounts of DH-D (low substrate affinity for 11beta-HSD-I) in combination with chenodeoxycholic acid (selective inhibition of 11beta-HSD-I) may prevent hepatic first pass reduction of DH-D, thus allowing selective activation of DH-D to D by the high affinity 11beta-HSD-II in the kidney. Moreover, selective inhibitors of the hepatic 11beta-HSD-I, like chenodeoxycholic acid, may become useful in the therapy of patients with hepatic insulin resistance including diabetes mellitus type II, because cortisol enhances gluconeogenesis.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3