Abstract
This review summarizes the current knowledge of the biosynthesis of neurosteroids in the human brain, the enzymes mediating these reactions, their localization and the putative effects of neurosteroids. Molecular biological and biochemical studies have now firmly established the presence of the steroidogenic enzymes cytochrome P450 cholesterol side-chain cleavage (P450SCC), aromatase, 5alpha-reductase, 3alpha-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase in human brain. The functions attributed to specific neurosteroids include modulation of gamma-aminobutyric acid A (GABAA), N-methyl-d-aspartate (NMDA), nicotinic, muscarinic, serotonin (5-HT3), kainate, glycine and sigma receptors, neuroprotection and induction of neurite outgrowth, dendritic spines and synaptogenesis. The first clinical investigations in humans produced evidence for an involvement of neuroactive steroids in conditions such as fatigue during pregnancy, premenstrual syndrome, post partum depression, catamenial epilepsy, depressive disorders and dementia disorders. Better knowledge of the biochemical pathways of neurosteroidogenesis and their actions on the brain seems to open new perspectives in the understanding of the physiology of the human brain as well as in the pharmacological treatment of its disturbances.
Subject
Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism