Demonstration of reduced in vivo surface expression of activating mutant thyrotrophin receptors in thyroid sections

Author:

Sequeira M,Jasani B,Fuhrer D,Wheeler M,Ludgate M

Abstract

OBJECTIVE: Thyroid function and growth are controlled by TSH. Hyperthyroidism can be due to Graves' Disease (GD), in which thyroid-stimulating antibodies mimic TSH, or gain-of-function mutations in the TSH receptor (TSHR). These activating mutations have poor surface expression when assessed in non-thyroidal cells in vitro but nothing is known of their in vivo behaviour. Several TSHR antibodies have been produced but none has been applied to thyroid paraffin sections. This study aimed to develop a technique suitable for use on paraffin sections and apply it to investigate TSHR expression in thyroids harbouring activating TSHR germline mutations compared with normal and GD thyroids. DESIGN AND METHODS: Immunocytochemistry coupled with antigen retrieval, using a spectrum of antibodies to the TSHR, was applied to paraffin sections of GD thyroid tissue. Subsequently, TSHR immunoreactivity was examined in three normal thyroids, three patients with GD and three patients with familial hyperthyroidism, due to different gain-of-function TSHR germline mutations, using the optimised protocol. RESULTS: Two antibodies, A10 and T3-495, to the extracellular domain (ECD) and membrane spanning region (MSR) of the TSHR respectively, produced specific basolateral staining of thyroid follicular cells. In normal and GD thyroids, basolateral staining with T3-495 was generally more intense than with A10, suggesting a possible surfeit of MSR over ECD. Graves' Disease thyroids have more abundant TSHR than normal glands. In contrast, thyroids harbouring gain-of-function mutations have the lowest expression in vivo, mirroring in vitro findings. CONCLUSIONS: The development of an immunocytochemical method applicable to paraffin sections has demonstrated that different molecular mechanisms causing hyperthyroidism result in the lowest (mutation) and highest (autoimmunity) levels of receptor at the thyrocyte surface.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3