Non-genomic actions of sex steroid hormones

Author:

Simoncini T,Genazzani AR

Abstract

Steroid hormone receptors have been traditionally considered to act via the regulation of transcriptional processes, involving nuclear translocation and binding to specific response elements, and ultimately leading to regulation of gene expression. However, novel non-transcriptional mechanisms of signal transduction through steroid hormone receptors have been identified. These so-called 'non-genomic' effects do not depend on gene transcription or protein synthesis and involve steroid-induced modulation of cytoplasmic or cell membrane-bound regulatory proteins. Several relevant biological actions of steroids have been associated with this kind of signaling. Ubiquitous regulatory cascades such as mitogen-activated protein kinases, the phosphatidylinositol 3-OH kinase and tyrosine kinases are modulated through non-transcriptional mechanisms by steroid hormones. Furthermore, steroid hormone receptor modulation of cell membrane-associated molecules such as ion channels and G-protein-coupled receptors has been shown. TIssues traditionally considered as 'non-targets' for classical steroid actions are instead found to be vividly regulated by non-genomic mechanisms. To this aim, the cardiovascular and the central nervous system provide excellent examples, where steroid hormones induce rapid vasodilatation and neuronal survival via non-genomic mechanisms, leading to relevant pathophysiological consequences. The evidence collected in the past Years indicates that target cells and organs are regulated by a complex interplay of genomic and non-genomic signaling mechanisms of steroid hormones, and the integrated action of these machineries has important functional roles in a variety of pathophysiological processes. The understanding of the molecular basis of the rapid effects of steroids is therefore important, and may in the future turn out to be of relevance for clinical purposes.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3