Evidence for co-ordinated changes between vascular endothelial growth factor and nitric oxide synthase III immunoreactivity, the functional status of the thyroid follicles, and the microvascular bed during chronic stimulation by low iodine and propylthiouracyl in old mice

Author:

Gerard AC,Xhenseval V,Colin IM,Many MC,Denef JF

Abstract

Vasoactive and angiogenic factors are involved in the autocrine/paracrine thyroid regulation of microvascular bed during goiter development. In the thyroid of old mice, the presence of slowly functioning ('cold') follicles allowed us to study the microvascular regulation of each follicle in correlation with the immunohistochemical expression of vascular endothelial growth factor (VEGF) and nitric oxide synthase III (NOSIII). Mice aged 20 months did or did not receive a goitrogenic treatment (low iodine diet and propylthiouracyl), and their thyroids were processed for light and electron microscopy, and for autoradiography. The relative volumes (Vv) of the capillaries, the number of vessels per follicular area, the mean capillary area and the number of [(3)H]thymidine labeled nuclei were measured separately for 'hot' and 'cold' follicles. Already in control mice, the capillary bed surrounding 'hot' follicles was significantly larger than that seen around 'cold' follicles, because of larger diameters and twice the number of capillaries. This difference persisted whatever the length of the stimulatory treatment. During this treatment, the Vv of the capillaries increased to a larger extent around 'hot' follicles than around 'cold' ones. All vascular changes around 'cold' follicles were less extended and the increase in the capillary diameter was delayed. In control mice, the 'cold' follicles were negative for NOSIII and positive for VEGF while 'hot' follicles were positive for both. During stimulation, all follicles became progressively NOSIII positive. These data support the concept of 'angio-follicular units' in the thyroid and demonstrate their differential regulation in chronic stimulation during which local secretion of VEGF and NO is clearly involved.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3