Amiodarone compared with iodine exhibits a potent and persistent inhibitory effect on TSH-stimulated cAMP production in vitro: a possible mechanism to explain amiodarone-induced hypothyroidism

Author:

Pitsiavas V,Smerdely P,Boyages SC

Abstract

Amiodarone (AMD) is a powerful anti-arrhythmic drug used for the treatment of a wide variety of cardiac arrhythmias and its most striking feature is its high iodine content. Thyroid dysfunction is a limiting side-effect of the drug and both AMD-induced hypothyroidism (AIH) and AMD-induced thyrotoxicosis (AIT) are reported. To examine the hypothesis that altered bioavailability of iodine is a contributing event in the pathogenesis of AIH, we compared the effects of AMD and inorganic iodine in vitro on events involved in the process of thyroid autoregulation. FRTL-5 cells and JP26 CHO cells (transfected with the human TSH receptor) were exposed to AMD or NaI in the presence of TSH, and cAMP production was measured as an indicator of cellular function. Forskolin and cholera toxin were also used to determine the possible target sites of AMD and iodide. Our results indicated that there was a difference between the effects of AMD versus those of physiological doses of iodide. The inhibitory effects of AMD occurred at lower concentrations of iodide than those seen in the NaI-treated cells. The effects of AMD were irreversible indicating a possible persistence of the Wolff-Chaikoff effect due to a constant high intracellular iodide level. The inhibitory effects of AMD (also seen at supraphysiological doses of iodide) were partially overcome by forskolin but not by cholera toxin indicating an effect on TSH receptor interactions with the other signal transduction elements such as G proteins and adenylate cyclase. The persistence of the Wolff-Chaikoff effect through loss of autoregulation may be a mechanism of the observed hypothyroidism in some patients taking AMD. The combined effects of the constant release of iodide together with the drug toxicity may be the mechanism for the observed effects.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3