Visualization of the protein–protein interactions of hormone receptors in hormone-dependent cancer research

Author:

Iwabuchi Erina12ORCID,Miki Yasuhiro3,Suzuki Takashi12,Sasano Hironobu1

Affiliation:

1. Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan

2. Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan

3. Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDes), Tohoku University, Sendai, Japan

Abstract

In hormone-dependent cancers, the activation of hormone receptors promotes the progression of cancer cells. Many proteins exert their functions through protein–protein interactions (PPIs). Moreover, in such cancers, hormone–hormone receptor binding, receptor dimerization, and cofactor mobilization PPIs occur primarily in hormone receptors, including estrogen, progesterone, glucocorticoid, androgen, and mineralocorticoid receptors. The visualization of hormone signaling has been primarily reported by immunohistochemistry using specific antibodies; however, the visualization of PPIs is expected to improve our understanding of hormone signaling and disease pathogenesis. Visualization techniques for PPIs include Förster resonance energy transfer (FRET) and bimolecular fluorescence complementation analysis; however, these techniques require the insertion of probes in the cells for PPI detection. Proximity ligation assay (PLA) is a method that could be used for both formalin-fixed paraffin-embedded (FFPE) tissue as well as immunostaining. It can also visualize hormone receptor localization and post-translational modifications of hormone receptors. This review summarizes the results of recent studies on visualization techniques for PPIs with hormone receptors; these techniques include FRET and PLA. In addition, super-resolution microscopy has been recently reported to be applicable to their visualization in both FFPE tissues and living cells. Super-resolution microscopy in conjunction with PLA and FRET could also contribute to the visualization of PPIs and subsequently provide a better understanding of the pathogenesis of hormone-dependent cancers in the future.

Publisher

Bioscientifica

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3