Effects of glucocorticoids on human brown adipocytes

Author:

Barclay Johanna L,Agada Hadiya,Jang Christina,Ward Micheal,Wetzig Neil,Ho Ken K Y

Abstract

Clinical cases of glucocorticoid (GC) excess are characterized by increased fat mass and obesity through the accumulation of white adipocytes. The effects of GCs on growth and function of brown adipose tissue are unknown and may contribute to the negative energy balance observed clinically. This study aims to evaluate the effect of GCs on proliferation, differentiation, and metabolic function of brown adipocytes. Human brown adipocytes sourced from supraclavicular fat biopsies were grown in culture and differentiated to mature adipocytes. Human white adipocytes sourced from subcutaneous abdominal fat biopsies were cultured as controls. Effects of dexamethasone on growth, differentiation (UCP1,CIDEA, andPPARGC1Aexpression), and function (oxygen consumption rate (OCR)) of brown adipocytes were quantified. Dexamethasone (1 μM) significantly stimulated the proliferation of brown preadipocytes and reduced that of white preadipocytes. During differentiation, dexamethasone (at 0.1, 1, and 10 μM) stimulated the expression ofUCP1,CIDEA, andPPARGC1Ain a concentration-dependent manner and enhanced by fourfold to sixfold the OCR of brown adipocytes. Isoprenaline (100 nM) significantly increased (P<0.05) expression ofUCP1and OCR of brown adipocytes. These effects were significantly reduced (P<0.05) by dexamethasone. Thus, we show that dexamethasone stimulates the proliferation, differentiation, and function of human brown adipocytes but inhibits adrenergic stimulation of the functioning of brown adipocytes. We conclude that GCs exert complex effects on development and function of brown adipocytes. These findings provide strong evidence for an effect of GCs on the biology of human brown adipose tissue (BAT) and for the involvement of the BAT system in the metabolic manifestation of Cushing's syndrome.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3