Bone morphogenetic protein 4 accelerates the establishment of bovine trophoblastic cell lines

Author:

Suzuki Yasunori,Koshi Katsuo,Imai Kei,Takahashi Toru,Kizaki Keiichiro,Hashizume Kazuyoshi

Abstract

Trophoblastic cells play a crucial role in implantation and placentogenesis. A large proportion of the failures of conception in cows occur in the peri-implantation period, which are known as early embryo losses. In exploring this critical phenomenon, trophoblastic cell lines can provide substantial information. Unfortunately, there are few cell lines for this purpose in cattle because of the difficulty of raising successive cell stock in the long term. In this study, 12 new cell lines were established using bone morphogenetic protein 4 (BMP4). BMP4 stimulated embryonic cells to enter the trophoblastic cell lineage but there were no significant differences between intact and BMP4-treated groups. Only one out of 49 embryos developed trophoblastic cells in the intact group. Finally, 12 cell lines were maintained for around 30 passages, and they retained trophoblastic characteristics and expressed bovine trophoblastic genes: placental lactogen, interferon-τ, pregnancy-associated glycoprotein 1, and prolactin-related protein 1. Although the gene expression patterns were different among cell lines and depended on the cells, there was no significant relationship between the expression intensities of genes and the treatment dose of BMP4. All of them expressed bovine POU domain class 5 transcription factor 1 and caudal-type homeobox 2. The expression of these genes was confirmed by quantitative RT-PCR and immunohistochemical detection. These results suggest that BMP4 is involved in the raising of trophoblast cell lines from early embryonic cells and the newly developed cell lines can provide different types of bovine trophoblastic cells with different cell lineages. This may constitute a significant new tool for the examination of trophoblastic differentiation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3