The effect of oviductal deleted in malignant brain tumor 1 over porcine sperm is mediated by a signal transduction pathway that involves pro-AKAP4 phosphorylation

Author:

Teijeiro Juan Manuel,Marini Patricia Estela

Abstract

The interaction between sperm and oviduct results in the selection of sperm with certain qualities. Porcine oviductal deleted in malignant brain tumor 1, DMBT1 (previously called sperm-binding glycoprotein, SBG), has been proposed to be implicated in sperm selection through acrosome alteration and suppression of motility of a subpopulation of sperm that have begun capacitation prematurely. It producesin vitroacrosome alteration and decrease of motility of boar sperm, concomitant with tyrosine phosphorylation of a 97 kDa sperm protein (p97). We hypothesized that the phosphorylation of p97 may be a link between DMBT1 sensing by a subpopulation of boar sperm and its biological effect. In this work, p97 was identified by mass spectrometry and immunoprecipitation as a porcine homologue of AKAP4. Pro-AKAP4 was localized by immunofluorescence and subcellular fractionation to the periacrosomal membranes and was shown to be tyrosine phosphorylated by DMBT1 regardless of the presence of calcium or bicarbonate, and of cAMP analogs, protein kinase A inhibitors, or a protein kinase C inductor. A processed ∼80 kDa form of AKAP4 was also detected at the tail of boar sperm, which was not tyrosine phosphorylated by DMBT1 under the conditions tested. Immunohistochemistry of testis showed presence of AKAP4 in boar sperm precursor cells. The evidence presented here supports the involvement of AKAP4 in the formation of the fibrous sheath on boar precursor sperm cells and implicates the phosphorylation of pro-AKAP4 as an early step in the signal transduction pathway gated by DMBT1 that leads to sperm selection through acrosome alteration.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3