Role for leptin in promoting glucose mobilization during acute hyperosmotic stress in teleost fishes

Author:

Baltzegar David A,Reading Benjamin J,Douros Jonathon D,Borski Russell J

Abstract

Osmoregulation is critical for survival in all vertebrates, yet the endocrine regulation of this metabolically expensive process is not fully understood. Specifically, the function of leptin in the regulation of energy expenditure in fishes, and among ectotherms, in general, remains unresolved. In this study, we examined the effects of acute salinity transfer (72 h) and the effects of leptin and cortisol on plasma metabolites and hepatic energy reserves in the euryhaline fish, the tilapia (Oreochromis mossambicus). Transfer to 2/3 seawater (23 ppt) significantly increased plasma glucose, amino acid, and lactate levels relative to those in the control fish. Plasma glucose levels were positively correlated with amino acid levels (R2=0.614), but not with lactate levels. The mRNA expression of liver leptin A (lepa), leptin receptor (lepr), and hormone-sensitive and lipoprotein lipases (hslandlpl) as well as triglyceride content increased during salinity transfer, but plasma free fatty acid and triglyceride levels remained unchanged. Both leptin and cortisol significantly increased plasma glucose levelsin vivo, but only leptin decreased liver glycogen levels. Leptin decreased the expression of liverhslandlplmRNAs, whereas cortisol significantly increased the expression of these lipases. These findings suggest that hepatic glucose mobilization into the blood following an acute salinity challenge involves both glycogenolysis, induced by leptin, and subsequent gluconeogenesis of free amino acids. This is the first study to report that teleost leptin A has actions that are functionally distinct from those described in mammals acting as a potent hyperglycemic factor during osmotic stress, possibly in synergism with cortisol. These results suggest that the function of leptin may have diverged during the evolution of vertebrates, possibly reflecting differences in metabolic regulation between poikilotherms and homeotherms.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3