Pre- and postnatal nutrition in sheep affects β-cell secretion and hypothalamic control

Author:

Kongsted Anna H,Husted Sanne V,Thygesen Malin P,Christensen Vibeke G,Blache Dominique,Tolver Anders,Larsen Torben,Quistorff Bjørn,Nielsen Mette O

Abstract

Maternal undernutrition increases the risk of type 2 diabetes and metabolic syndrome later in life, particularly upon postnatal exposure to a high-energy diet. However, dysfunctions of, for example, the glucose–insulin axis are not readily detectable by conventional tests early in life, making it difficult to identify individuals at risk. Thus, other methods are required. We hypothesised that prenatally undernourished individuals (but not postnatally overnourished ones) are adapted to a life with limited food availability, which would be evident under conditions reflecting starvation, stress and short-term abundance of food. In this study, twin-pregnant sheep were fed diets meeting 100% (NORM) or 50% (LOW) of energy and protein requirements during the last trimester. Twin offspring were fed either a normal moderate (CONV) diet or a high-carbohydrate–high-fat (HCHF) diet from 3 days to 6 months of age (approximately puberty) and the same moderate diet thereafter until 2 years of age (young adulthood; only females), resulting in four groups: NORM-CONV, LOW-CONV, NORM-HCHF and LOW-HCHF. At the age of 6 months and 2 years respectively, they were subjected to fasting and propionate (nutrient abundance) and adrenalin challenges. At 6 months of age, postnatal HCHF diet exposure caused metabolic alterations, reflecting hypertriglyceridaemia and altered pancreatic β-cell secretion. Irrespective of postnatal diet, prenatal undernutrition was found to be associated with unexpected endocrine responses of leptin, IGF1 and cortisol during fasting (lack of or the opposite response compared with the controls) in 2-year-old adults. In conclusion, a HCHF diet interfered with β-cell function, whereas maternal undernutrition did not lead to any changes in the LOW offspring, except to abnormal hormone responses, suggesting that fetal programming interferes with hypothalamic integration of important endocrine axis.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3