Downregulation of the ACE2/Ang-(1–7)/Mas axis in transgenic mice overexpressing GH

Author:

Muñoz Marina C,Burghi Valeria,Miquet Johanna G,Giani Jorge F,Banegas Ricardo D,Toblli Jorge E,Fang Yimin,Wang Feiya,Bartke Andrzej,Dominici Fernando P

Abstract

The renin–angiotensin system (RAS) plays a crucial role in the regulation of physiological homeostasis and diseases such as hypertension, coronary artery disease, and chronic renal failure. In this cascade, the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/AT1 receptor axis induces pathological effects, such as vasoconstriction, cell proliferation, and fibrosis, while the ACE2/Ang-(1–7)/Mas receptor axis is protective for end-organ damage. The altered function of the RAS could be a contributing factor to the cardiac and renal alterations induced by GH excess. To further explore this issue, we evaluated the consequences of chronic GH exposure on thein vivolevels of Ang II, Ang-(1–7), ACE, ACE2, and Mas receptor in the heart and the kidney of GH-transgenic mice (bovine GH (bGH) mice). At the age of 7–8 months, female bGH mice displayed increased systolic blood pressure (SBP), a high degree of both cardiac and renal fibrosis, as well as increased levels of markers of tubular and glomerular damage. Angiotensinogen abundance was increased in the liver and the heart of bGH mice, along with a concomitant increase in cardiac Ang II levels. Importantly, the levels of ACE2, Ang-(1–7), and Mas receptor were markedly decreased in both tissues. In addition, Ang-(1–7) administration reduced SBP to control values in GH-transgenic mice, indicating that the ACE2/Ang-(1–7)/Mas axis is involved in GH-mediated hypertension. The data indicate that the altered expression profile of the ACE2/Ang-(1–7)/Mas axis in the heart and the kidney of bGH mice could contribute to the increased incidence of hypertension, cardiovascular, and renal alterations observed in these animals.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3