Differential regulation of endothelium behavior by progesterone and medroxyprogesterone acetate

Author:

Cutini Pablo H,Campelo Adrián E,Massheimer Virginia L

Abstract

Medroxyprogesterone acetate (MPA) is a synthetic progestin commonly used in hormone replacement therapy (HRT). The aim of this research was to study and compare the effect of progesterone (Pg) and MPA on the regulation of cellular events associated with vascular homeostasis and disease. Platelet adhesion to endothelial cells (ECs), nitric oxide (NO) production, and cell migration were studied using murine ECs in vitro exposed to the progestins. After 7 min of treatment, MPA significantly inhibited NO synthesis with respect to control values; meanwhile, Pg markedly increased vasoactive production. In senile ECs, the stimulatory action of Pg decreases; meanwhile, MPA maintained its ability to inhibit NO synthesis. The presence of RU486 antagonized the action of each steroid. When ECs were preincubated with PD98059 (MAPK inhibitor) or chelerythrine (protein kinase C (PKC) inhibitor) before Pg or MPA treatment, the former totally suppressed the steroid action, but the PKC antagonist did not affect NO production. In the presence of a PI3K inhibitor (LY294002), a partial reduction in Pg effect and a reversal of MPA action were detected. Using indomethacin, the contribution of the cyclooxygenase (COX) pathway was also detected. On platelet adhesion assays, Pg inhibited and MPA stimulated platelet adhesion to ECs. Under inflammatory conditions, Pg prevented platelet adhesion induced by lipopolysaccharide (LPS); meanwhile, MPA potentiated the stimulatory action of LPS. Finally, although both steroids enhanced migration of ECs, MPA exhibited a greater effect. In conclusion, the data presented in this research provide evidence of a differential regulation of vascular function by Pg and MPA.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3