Frequent SLC12A3 mutations in Chinese Gitelman syndrome patients: structure and function disorder

Author:

Jiang Lanping12,Peng Xiaoyan13,Zhao Bingbin1,Zhang Lei1,Xu Lubin1,Li Xuemei1,Nie Min4,Chen Limeng1

Affiliation:

1. 1Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

2. 2Department of Nephrology & Key Laboratory of Nephrology, National Health Commission and Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

3. 3Renal Division, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China

4. 4Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Abstract

Purposes This study was conducted to identify the frequent mutations from reported Chinese Gitelman syndrome (GS) patients, to predict the three-dimensional structure change of human Na–Cl co-transporter (hNCC), and to test the activity of these mutations and some novel mutations in vitro and in vivo. Methods SLC12A3 gene mutations in Chinese GS patients previously reported in the PubMed, China National Knowledge Infrastructure, and Wanfang database were summarized. Predicted configurations of wild type (WT) and mutant proteins were achieved using the I-TASSER workplace. Six missense mutations (T60M, L215F, D486N, N534K, Q617R, and R928C) were generated by site-directed mutagenesis. 22Na+ uptake experiment was carried out in the Xenopus laevisoocyte expression system. In the study, 35 GS patients and 20 healthy volunteers underwent the thiazide test. Results T60M, T163M, D486N, R913Q, R928C, and R959frameshift were frequent SLC12A3 gene mutations (mutated frequency >3%) in 310 Chinese GS families. The protein’s three-dimensional structure was predicted to be altered in all mutations. Compared with WT hNCC, the thiazide-sensitive 22Na+ uptake was significantly diminished for all six mutations: T60M 22 ± 9.2%, R928C 29 ± 12%, L215F 38 ± 14%, N534K 41 ± 15.5%, Q617R 63 ± 22.1%, and D486N 77 ± 20.4%. In thiazide test, the net increase in chloride fractional excretion in 20 healthy controls was significantly higher than GS patients with or without T60M or D486N mutations. Conclusions Frequent mutations (T60M, D486N, and R928C) and novel mutations (L215F, N534K, and Q617R) lead to protein structure alternation and protein dysfunction verified by 22Na+ uptake experiment in vitro and thiazide test on the patients.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3