Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro

Author:

Harris Sarah E,Adriaens Iris,Leese Henry J,Gosden Roger G,Picton Helen M

Abstract

Metabolic markers are potentially valuable for assessment of follicle development in vitro. Carbohydrate metabolism of murine preantral follicles grown to maturityover 13 days in vitro has been measured, and metabolism of resulting oocyte–cumulus complexes (OCCs) and denuded oocytes has been compared with in vivo ovulated control counterparts. Spent follicle culture media were analysed for glucose, lactate and pyruvate concentrations. During follicle in vitro growth, glycolysis accounted for a rise from ∼24 to 60% of all glucose consumed. Ovulation induction caused a significant increase in glucose uptake and lactate production by in vitro-grown follicles to 71.7±1.2 and 96.6±4.8 nmoles/day respectively. OCCs grown in vitro had significantly higher rates of glucose consumption and lactate and pyruvate production (110.1± 3.5, 191.8± 8.9 and 31.7± 1.7 pmoles/h respectively) than in vivo ovulated controls (67.4± 8.1, 113.9± 17.1 and 20.2± 4.0 pmoles/h respectively), but a reduced capacity for pyruvate consumption (1.13± 0.06 vs 1.49± 0.06 pmoles/h by in vivo ovulated oocytes). Metabolism of OCCs was affected by the quality of the original follicle. In vitro-grown oocytes had a reduced cytoplasmic volume when compared with controls (168.3± 2.0 vs 199.0± 3.2 proportionately respectively) but a similar rate of metabolism per unit volume. Meiotic status influenced metabolism of both OCCs and denuded oocytes. In conclusion, glucose consumption and lactate production by cultured follicles increased in tandem with developmental progression and were stimulated prior to ovulation. Additionally, the metabolic profiles of in vitro produced OCCs and the oocytes within them are affected by long-term exposure to the culture environment.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3