Low systemic testosterone levels induce androgen maintenance in benign rat prostate tissue

Author:

Zhou Ye,Otto-Duessel Maya,He Miaoling,Markel Susan,Synold Tim,Jones Jeremy O

Abstract

Prostate cancer (PC) is both an age- and an androgen-dependent disease. Paradoxically, systemic levels of androgens decline with age as the risk of PC rises. While there is no correlation between systemic androgen levels and the risk of PC, systemic androgen levels do not reflect the levels of androgens in prostate tissue. In metastatic PC, changes in the androgen biosynthesis pathway during hormone therapy result in increased levels of androgens in cancer tissue and contribute to continued androgen receptor (AR) signaling. It is possible that similar changes occur in normal prostate tissue as androgen levels decline with age and that this contributes to tumorigenesis. In the present study, we sought to determine whether the rat prostate is able to maintain functional levels of androgens despite low serum testosterone levels. Rats were castrated and implanted with capsules to achieve castrate, normal, sub-physiological, and supra-physiological levels of testosterone. After 6 weeks of treatment, LC–MS/MS was used to quantify the levels of testosterone and dihydrotestosterone (DHT) in the serum and prostate tissue. Quantitative RT-PCR was used to quantify the expression of genes involved in the androgen/AR signaling axis. Despite significantly different levels of testosterone and DHT being present in the serum, testosterone and DHT concentrations in prostate tissue from different testosterone-treatment groups were very similar. Furthermore, the expression of androgen-regulated genes in the prostate was similar among all the testosterone-treatment groups, demonstrating that the rat prostate can maintain a functional level of androgens despite low serum testosterone levels. Low-testosterone treatment resulted in significant alterations in the expression of androgen biosynthesis genes, which may be related to maintaining functional androgen levels.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3