Potential role of estradiol and progesterone in insulin resistance through constitutive androstane receptor

Author:

Masuyama Hisashi,Hiramatsu Yuji

Abstract

Normal pregnancy is characterized by insulin resistance, which contributes to the development of gestational diabetes mellitus and preeclampsia by incompletely understood mechanisms. The constitutive androstane receptor (CAR) may participate in insulin resistance in pregnancy, and sex steroids, estradiol (E2) and progesterone, may also be involved. We applied glucose and insulin tolerance tests and measured the expression of gluconeogenic and lipogenic genes in the livers of oophorectomized mice treated with E2and progesterone with or without CAR ligands. We also investigated how E2and progesterone affected CAR-mediated signaling and the activity of transcription factors in gluconeogenesisin vitro. Mice with the concentrations of E2and progesterone within normal physiological range during pregnancy exhibited increased insulin resistance along with increased expression of gluconeogenic and lipogenic genes, and CAR activation rescued the abnormal glucose metabolism. In HepG2 cells, CAR ligands suppressed the gluconeogenic and lipogenic gene expression in the presence of E2and/or progesterone. DNA affinity immunoblotting and chromatin immunoprecipitation assay revealed that CAR ligand enhanced the recruitment of the gluconeogenic transcription factors, forkhead box O1 (FOXO1) and hepatocyte nuclear factor 4α (HNF4α), but sex steroids suppressed these recruitments on the CAR responsive element. Moreover, CAR ligand suppressed the recruitment of FOXO1 and HNF4α on their responsive element in gluconeogenic gene promoters and E2and progesterone augmented these recruitments on their responsive element. Taken together, these findings suggest that the activation of CAR-mediated signaling may ameliorate insulin resistance under relatively high concentrations of E2and progesterone, which were compatible with pregnancy via decreased activities of transcription factors in gluconeogenesis in combination with CAR.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3