Aromatase activity induction in human adipose fibroblasts by retinoic acids via retinoic acid receptor α

Author:

Wilde Jan,Erdmann Maria,Mertens Michael,Eiselt Gabriele,Schmidt Martin

Abstract

Estrogen synthesis in adipose tissue is associated with the development of breast cancer. Tumors are preferentially found in breast quadrants with strongest expression of the cytochrome P450 aromatase (encoded by the geneCYP19A1). Several promoters regulated by various hormonal factors drive aromatase expression in human breast adipose fibroblasts (BAFs). As adipose tissue is a major source of retinoids, in this study, we investigated their role in the regulation of aromatase expression. The retinoids all-trans-retinoic acid (at-RA) and 9-cis-RA induce aromatase activity in human BAFs. In BAFs, at-RA induces aromatase gene expression via promoter I.4. In 3T3-L1 cells, both retinoids specifically drive luciferase reporter gene expression under the control of aromatase promoter I.4, whereas other promoters active in human adipose tissue are insensitive. Activation by retinoids depends on a 467 bp fragment (−256/+211) of promoter I.4 containing four putative retinoic acid response elements (RAREs). Site-directed mutagenesis revealed that only RARE2 (+91/+105) mediates the retinoid-dependent induction of reporter gene activity. In 3T3-L1 preadipocytes and human BAFs, RA receptor α (RARα (RARA)) expression is predominant, whereas RARβ (RARB) or RARγ (RARG) expression is low. Electrophoretic mobility shift assays with nuclear extracts obtained from human BAFs and 3T3-L1 cells identified a specific RARE2-binding complex. Retinoids enhanced complex formation, whereas pre-incubation with anti-RARα antibodies prohibited the binding of RARα to RARE2. Chromatin immunoprecipitation showed RA-dependent binding of RARα to the RARE2-containing promoter regionin vivo. Furthermore, we provide evidence that RARE2 is also necessary for the basal activation of promoter I.4 in these cells. Taken together, these findings indicate a novel retinoid-dependent mechanism of aromatase activity induction in adipose tissue.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3