The ligand-mediated nuclear mobility and interaction with estrogen-responsive elements of estrogen receptors are subtype specific

Author:

Muyan Mesut,Callahan Linda M,Huang Yanfang,Lee Andrew J

Abstract

17β-Estradiol (E2) plays important roles in functions of many tissues. E2 effects are mediated by estrogen receptor (ER) α and β. ERs regulate transcriptions through estrogen-responsive element (ERE)-dependent and ERE-independent modes of action. ER binding to ERE constitutes the basis of the ERE-dependent pathway. Direct/indirect ER interactions with transcription complexes define ERE-independent signaling. ERs share functional features. Ligand-bound ERs nevertheless induce distinct transcription profiles. Live cell imaging indicates a dynamic nature of gene expressions by highly mobile ERs. However, the relative contribution of ER mobility at the ERE-independent pathway to the overall kinetics of ER mobility remains undefined. We used fluorescent recovery after a photo-bleaching approach to assess the ligand-mediated mobilities of ERE binding-defective ERs, EREBD. The decrease in ERα mobility with E2 or the selective ER modulator 4-hydroxyl-tamoxifen (4HT) was largely due to the interaction of the receptor with ERE. Thus, ERα bound to E2 or 4HT mediates transcriptions from the ERE-independent pathway with remarkably fast kinetics that contributes fractionally to the overall motility of the receptor. The antagonist Imperial Chemical Industries 182 780 immobilized ERαs. The mobilities of ERβ and ERβEBD in the presence of ligands were indistinguishable kinetically. Thus, ERβ mobility is independent of the nature of ligands and the mode of interaction with target sites. Chimeric ERs indicated that the carboxyl-termini are critical regions for subtype-specific mobility. Therefore, while ERs are highly mobile molecules interacting with target sites with fast kinetics, an indication of the hit-and-run model of transcription, they differ mechanistically to modulate transcriptions.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3