Transmission electron microscopy studies of the zona reaction in pig oocytes fertilized in vivo and in vitro

Author:

Funahashi H,Ekwall H,Kikuchi K,Rodriguez-Martinez H

Abstract

The aim of this study was to determine the ultrastructure of cross-sectioned zonae pellucidae of in vitro-matured and ovulated pig oocytes before or after sperm penetration in vitro and in vivo, respectively. The in vitro and in vivo (ovulated) oocytes and zygotes (fertilized in vitro and in vivo) were fixed with glutaraldehyde either directly or after pretreatment with ruthenium red and saponin, processed and then examined using transmission electron microscopy. The thickness of the zona pellucida, as measured on the section of the specimens with largest diameter fixed with glutaraldehyde, differed between the in vivo (9.19 +/- 0.47 microm) and in vitro (5.95 +/- 0.51 microm) oocytes. The in vivo oocytes had a rather thick external mesh-like structure, whereas it was much thinner in the in vitro oocytes. This mesh-like external rim was less apparent in both in vivo and in vitro zygotes. Obvious differences in the density of the lattice formed by the fixed zonae pellucidae were visible between the outer and inner (ad-oolemmal) zonae. The outer area always formed a concentrically arrayed fibrillar network, whereas the inner area showed a much more compact, trabecule-like mesh. However, both areas, but particularly the outer network, were much more compacted after the zona reaction. Clear differences in the degree of fibrillar aggregation of the inner zona area were also observed between in vitro and in vivo zygotes, being much higher in the latter. This fibrillar network was more clearly visible in the zygotes pretreated with ruthenium red and saponin; the in vitro zygotes had a fibrillar, radially oriented set of parallel fibrils, whereas it was much more aggregated and trabecule-like in the in vivo zygotes. These results demonstrate that the fine structure of the zona pellucida and the zona reaction at sperm penetration differ between pig oocytes fertilized in vivo and in vitro. Moreover, the ultrastructure of the outer and inner pig zonae pellucidae has a different network organization.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3